Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VIU. Belagavi & Approved by AICTE New Delhi						
CRM08	Rev 1.10	<ec></ec>	<04/08/2021>			

CONTINUOUS INTERNAL EVALUATION- 3

Dept:EC	Sem / Div: VI	Sub:Microwaves and	S Code:18EC63					
		Antennas						
Date:05/08/2021	Time: 9:30-11:00 am	Max Marks: 50	Elective:N					
Note: Answer any 2 full questions, choosing one full question from each part.								

	Q	Questions	Marks	RBT	COs			
	N							
	PART A							
1	a	Obtain field expression of two isotropic point sources of same amplitude and opposite phase.	9	L3	CO3			
	b	Derive an expression for radiation resistance of short dipole antenna.	8	L3	CO3			
	c	A 16 turn helical beam antenna has a circumference of λ and a turn spacing of $\lambda/4$.	8	L2	CO4			
		Find: a. HPBW, b. Axial ratio and c. Directivity						
OR								
2	a	Determine the length L of H-plane aperture and flare angles θ_E and θ_H	8	L3	CO2			
		of a pyramidal horn for which the E-plane aperture a_E is 10 λ . The horn						
		is fed by a rectangular waveguide with TE_{10} mode. Let $\delta = 0.2\lambda$ in the E						
		plane and 0.375λ in the H plane. Also find beam widths and the						
		directivity.						
	b	Explain: i) Yagi-Uda antenna, ii) Parabolic reflectors	8	L2	CO2			
	c	State and prove the power theorem.	9	L2	CO3			
		· · · · ·						
PART B								
3	a	Prove that directivity for a source with Unidirectional pattern of $U_m COS^n \theta$ is D=2(n+1).	8	L3	CO3			
	b	Derive the expressions for field of dipole in general for the case of thin linear antenna.	8	L3	CO3			
	c	Discuss features of Helical antennas. Give construction details of Helical antenna.	9	L2	CO4			
OR								
4	a	Draw the structure of a pyramidal horn antenna. Use the principle of equality of path length and bring out the optimum horn dimensions.	9	L2	CO4			
	b	Derive radiation resistance of a small single turn circular loop antenna with uniform phase current.	8	L3	CO4			
	c	Derive an expression for array factor & relative field of linear array of 'n' isotropic point sources of equal magnitude and spacing.	8	L3	CO3			